Line-defect photonic crystal terahertz quantum cascade laser
نویسندگان
چکیده
منابع مشابه
Terahertz photonic crystal quantum cascade lasers.
We combine photonic crystal and quantum cascade band engineering to create an in-plane laser at terahertz frequency. We demonstrate that such photonic crystal lasers strongly improve the performances of terahertz quantum cascade material in terms of threshold current, waveguide losses, emission mode selection, tunability and maximum operation temperature. The laser operates in a slow-light regi...
متن کاملQuantum cascade surface-emitting photonic crystal laser.
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current ...
متن کاملMonolithic photonic crystal quantum-cascade laser
We present the design and realization of active photonic crystal (PhC) terahertz quantum-cascade lasers. The devices consist of sub-wavelength isolated pillars which are embedded in a double-metal waveguide. The lasing is observed at flat-band regions not in the bandgap itself. A stable single-mode emission under all driving conditions is achieved.
متن کاملDesign of two-dimensional photonic crystal defect states for quantum cascade laser resonators
Current quantum cascade lasers based upon conduction band electron transitions are predominantly TM (electrical field normal to the epitaxial direction) polarized. Here we present a study of localized defect modes, with the requisite TM polarization, in connected square and hexagonal lattice twodimensional (2D) photonic crystals for application as quantum cascade laser resonators. A simple grou...
متن کاملHyperuniform disordered terahertz quantum cascade laser
Laser cavities have been realized in various different photonic systems. One of the forefront research fields regards the investigation of the physics of amplifying random optical media. The random laser is a fascinating concept because, further to the fundamental research investigating light transport into complex media, it allows us to obtain non-conventional spectral distribution and angular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2019
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.5120025